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------------------------------------------------------------------ABSTRACT -------------------------------------------------------------------- 

Elliptic curve calculation was not introduced to cryptography until 1985. Compared with RSA, the advantage of elliptic curve 
cryptography lies in its ensuring the same security while the length of key of elliptic curve cryptography is much less than RSA 
cryptography and its lessening operation load. In this article a change of representation for elements in GF(25) is proposed to 
use in elliptic curve cryptography. The proposed representation is useful for architectures that implement Montgomery 
multiplication in the finite field GF(25). In fact, it needs virtually no cost in terms of conversion operations from a standard 
multiplication into a Montgomery multiplication. 
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1. Introduction  

During the last few years elliptic curve cryptography (ECC) 
has become very popular since, among the other benefits, it  
uses significantly shorter keys than traditional alternatives like 
RSA, and is especially attractive for mobile and wireless 
devices which typically have limited computational resources 
and bandwidth. For instance, 160-bit ECC keys provide 
roughly the same level of security as 1024-bit RSA keys[1]. 
Several standardisation bodies, including ANSI, NIST, ISO, 
and IEEE, have adopted during the last five years standards 
for EC cryptography[2]. 
From a mathematical point of view, ECC is based on elliptic 
curves defined over finite fields[3], whose points form a 
group[1]. The main operation in ECC is the so-called point-
multiplication, that is k .P where k is an integer and P is a point 
on the elliptic curve. Point mu ltiplication and associated 
operations used in ECC are always reduced to arithmetic 
operations in the underlying finite fields. Efficient 
implementation of field arithmetic is therefore critical to the 
performance of ECC. This is especially true of field 
multiplication.  
Standardization bodies recommend using either prime fields 
Fp or binary extension fields  GF (2m)  as the underlying finite 
field for ECC[2]. The elements of Fp are the integers 0, . . . , p-
1, and arithmetic on field elements is performed modulo the 
prime p. Elements in a finite field  GF (2m), alternatively, can 

be represented as binary polynomials of degree m-1[3]. When 
such representation is used, multiplication is  performed as a 
conventional polynomial multiplication modulo an irreducible 
polynomial p(x), and addition is performed by bitwise 
XORing the bits of element representation. For both types of 
finite fields, the multiplication of elements implies a reduction 
operation, either modulo a prime p or modulo an irreducible 
polynomial p(x). 
A well-known algorithm for modular multiplication in Fp was 
proposed by Montgomery[4]. With the Montgomery 
algorithm, the reduction operation is interleaved with the 
multiplication steps by addition of multiples of the modulus, 
and division operations are replaced with simple shifts, which 
are particularly suitable for implementation in hardware and in 
software on general purpose computers. Therefore, the 
Montgomery multiplication algorithm generally allows for the 
design of a hardware unit with shorter signal propagation. 
Importantly, Montgomery multiplication enables efficient and 
elegant design approaches such as systolic array[5] and 
pipeline organizations[6]. In[7], it was shown that the 
Montgomery method can be extended to multiplication in 
GF(2m),, when polynomial basis is used. Since the steps of the 
Montgomery multiplication algorithm for both fields are 
almost identical.  
The Montgomery method computes a(x). b(x). x-m mod p(x) in  
GF (2m),  (where m correspond to the bit size of the 
operands), and requires a pre- and post processing conversion 
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of field elements. In this article we propose a change of 
representation for elements in  GF (25), which transforms a 
standard multiplication into a Montgomery multiplication at 
virtually no cost in terms of conversion operations. Existing 
research and commercial solutions implementing  GF (25),  
Montgomery multiplication can adopt such representation 
without any modification. 
 
2.Mathematical Background  
2.1The Finite Field GF(2m) 
 The finite field GF(2m)  is the characteristic 2 finite 
field containing 2m elements. Although there is only one 
characteristic 2 finite field GF(2m) for each power 2m of 2 with 
m  = 1, there are many different ways to represent the elements 
of  GF(2m). 
Here the elements of GF(2m) should be represented by the set 
of binary polynomials of degree m – 1 or less: 
With addition and multiplication defined in terms of an 
irreducible binary polynomial f(x) of degree m, known as the 
reduction polynomial, as follows: 

• Addition: 
If a=am-1 xm-1+……… +a0, 

 b=bm-1 xm-1+……… +b0∈ GF(2m), 
 then a+b=r in ∈ GF(2m) 
,where r= rm-1 xm-1+……… +r0 

 with ri ≡ ai + b i (mod 2). 
• Multiplication:  

If a=am-1 xm-1+……… +a0,  
b=bm-1 xm-1+……… +b0∈ GF(2m), 

,then a.b = s in GF(2m), 
 where s=sm-1 xm-1+……… +s0   is the remainder when 
the polynomial ab is divided by f(x) with all 
coefficient arithmetic performed modulo 2. 

 
Addition and multiplication  in GF(2m) can be calculated 
efficiently using standard algorithms for ordinary integer and 
polynomial arithmetic . In this representation of GF(2m), the 
additive identity is the polynomial 1. 
Again it is convenient to define subtraction and division of 
field elements. To do so the additive inverse (or negative) and 
multiplicative inverse of a field element must be described: 

• Additive inverse: if  a∈GF(2m), then the additive 
inverse (-a) of a in GF(2m) is the unique solution to 
the equation a+x = 0 in GF(2m).  

• Multiplicative inverse : if  a∈GF(2m), a ? 0, then the 
multiplicative inverse a-1 of a in GF(2m) is the unique 
solution to the equation a.x = 1 in GF(2m). 

Additive inverses and multiplicative inverses in GF(2m) can be 
calculated effectively using the extended Euclidean algorithm. 
Division and subtraction are defined in terms of additive and 
multiplicative inverse: 
a-b in GF(2m) is a + (-b) in GF(2m) and a/b in GF(2m) is a.(b-1) 
in GF(2m).    
 
 

2.2Elliptic Curves Over GF(2m) 
Let  GF(2m) be a characteristic  2 finite field, and let a, b ∈ 
GF(2m) satisfy b ? 0 GF(2m). Then a (non-supersingular) 
elliptic curve E(GF(2m)) over GF(2m) defined by the 
parameters a, b ∈ GF(2m) consists of the set of solutions or 
points P=(x,y) for  x,y ∈ GF(2m) to the equation: 
 

y2=x.y=x3 + a.x2 + b in GF(2m) 
 

together with an extra point O called the point at 
infinity[11,12]. (Here the only elliptic curves over GF(2m) of 
interest are non-supersingular elliptic curves.) 
The number of points on E(GF(2m))  is denoted by # 
E(GF(2m)). The Hasse Theorem states that: 
 

2m + 1 - 2 2m = #  E(GF(2m)) = 2m + 1+ 2 2m . 
 

It is again possible to define an addition rule to add points on 
E as the addition rule is specified as follows: 

1. Rule to add the point at infinty to itself:  
O + O =O 

2. Rule to add the point at infinity to any other point: 
(x,y) + O = O +(x,y)= (x,y) for all (x,y) ∈ GF(2m) 

3. Rule to add two points with the same –coordinates 
when the points are either distinct or have  

       x-coordinates 0: 
(x,y) + (x,x + y)= O for all (x,y)∈ GF(2m) 

4. Rule to add two points with different x-coordinates: 
Let (x1,y1) ∈ GF(2m)    and (x2,y2) ∈ GF(2m) be two 
points such that x1? x2. Then (x1,y1)+ (x2,y2)= (x3,y3) , 
where: 

 
     x3=? 2+ ?+x1+x2 +a  in GF(2m), 
     y3 = ?.(  x1+x3) +x3 + y1 in GF(2m),  

and ? ≡  1 2

1 2

y y
x x

+
+

in    GF(2m).  

 
5. Rule to add a point to itself (double a point): Let 

(x1,y1) ∈ GF(2m)  be a point with x1 ? 0. Then (x1,y1) 
+ (x1 ,y1) =(x3 ,y3)  ,where: 

 
      x3 =? 2+ ?+a  in GF(2m) , y3 = x2

1+ (? +1).x3  in GF(2m) ,  

       and ? =x1  + 1

1

y
x

in GF(2m).  

 
The set of points on E(GF(2m)) forms an abelian group under 
this addition rule. Notice that the addition rule can always be 
computed efficiently using simple field arithmetic.  
Cryptographic schemes based on ECC rely on scalar 
multiplication of elliptic curve points. As before given an 
integer k and a point P ∈ GF(2m) , scalar multiplication is the 
process of adding P to itself k times. The result of this scalar 
multiplication is denoted  kP. 
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3.Proposed representation 
  
Let   f(x)=x5+x2 +1-----(1)   be an irreducible polynomial over 
F2 of degree  5 and let  
F2[x]/ f(x) be the corresponding quotient ring.  F2[x]/ f(x)  is 
isomorphic to the field  GF (25)  and is used for polynomial 
representation. We consider the reciprocal polynomial of f(x) , 

denoted  ( )f x : 

We have that ( )f x  is irreducible and F2[x]/ ( )f x  is a finite 
field. 
We define the map  as: 

4 5 4
52 2

0 1 0

[ ] [ ]
: ,

( ) ( )
i i i

ii i
i i i

F x F x
a a x a a x a x x

f x f x
ψ −

= = =

 
→ = → = =   

∑ ∑ ∑
                                                                                ------------(2) 
 
Definition (2) refers to field elements a∈F2[x]/ f(x) 
represented as polynomials of degree less than 5. ψ (a)= a  is 

the element in F2[x]/ ( )f x whose polynomial representation is 

obtained by reversing the bits of the polynomial representation 
of ‘a’ in F2[x] /f(x) and shifting them left by one position. We 
call this representation reciprocal representation. Note that 

polynomial a  in (2) is of degree ≤  5and  0 0a = . 

ψ  is bijective and has the following  properties: 
 
P1. ψ  preserves the addition, and maps the addition in 
F2[x]/f(x)to the addition in  

 F2[x]/ ( )f x : 

                                                  a b a b+ = + ------------(3) 
 

P2. For any a∈ F2[x]/ f(x)  we have: ψ 1( . ) . .a x a x a x−= =  

In fact, (2) refers to field elements ‘a’ represented as 
polynomials of degree less then 5. In order to have a.x written 
in that from in  F2[x]/ f(x) we add a suitable multiple of f(x) to 
it: 

a.x = a.x+a4. f(x) = 
5

1 4
0

( ) i
i i

i

a a p x−
=

+∑  

                                  = 
4

1 4
0

( ) i
i i

i

a a p x−
=

+∑ --------------(4) 

where p5=1 and a–1=0 
Recalling that (e+e) = 0 for any e ∈ F2={0,1}, and P5=1, a-1=0, 

we can rewrite  ( . ) .a x a xψ = in F2[x]/ ( )f x  as: 

.a x = 
4 4

1 4 1 4
0 0

) [ ( ) ]i i
i i i i

i i

a a p x a a p x−
− −

= =

+ = +∑ ∑ x5  

      = 
4 4

5 5
1 4

0 0

i i
i i

i i

a x a p x− + − +
−

= =

+∑ ∑  

      =  
4

5
1 4 5 4 5

0

( )i
i

i

a x a p a p− +
−

=

+ −∑  

        
4 3

5 4
4

0 0

i j
i j

i j

a p x a x− −

= =

+ =∑ ∑  

         
5

5
4 5 4

0

i
i

i

a p a p x −

=

+ + ∑  

       =
4 4

(4) 5 1 1
4

0 0

( ) . .j j
j j

j j

a x a f x a x x x a x− − − −

= =

 
+ = = 

 
∑ ∑                

                                                                  ---------------------(5) 
 
P3.It follows form P1 and P2 that the expression in the right-

hand  side of (2) can be generalized to a=
1

0

N i
ii

a x
−

=∑  with an 

arbitrary N>5. Indeed, from the definition we have 
5. [ . ]s se x e x x−=  for any binary coefficient e ∈ F2={0,1} and 

s<5,and also, based on P2: 
1 1 1 2 1. . . . . . . .s s s se x e x x e x x e x x x− − − − −= = =  

2 2 4 ( 4). ......... . .s se x x e x x− − − −= =  
4 5 ( 4) 5. . . [ . ]s se x x x e x x− − − −=    ---------------------(6) 

for any e∈ F2  and s  ≥  5.ψ (a)= a  can thus be written as: 
1 1 1

5

0 0 0

N N N
i i i

i i i
i i i

a x a x a x x
− − −

−

= = =

 
= =   

∑ ∑ ∑  for any N ≥ 5 ---------(7) 

 
P4.ψ  preserves the multiplication, and maps the 
multiplication in  F2[x]/ f(x) to the Montgomery multiplication 

in  F2[x]/ ( )f x . Indeed, in F2[x]/ ( )f x we have 
4 45 5

0 0
,i j

i ji j
a a x x b b x x− −

= =
   = =   ∑ ∑  and the 

Montgomery product 5. .a b x−  is given by  
4 4

5 5 5 ( ) 5

0 0 , 5

[ ]. [ ] . [ ].i j i j
i j i j

i i i j

a x x b x x x a b x x− − − − +

= = <

= =∑ ∑ ∑   

                                                                      -------------------(8) 
Property P3 ensures that the right-hand term in the above 
expression can be written as  

( ) 5

, 5 , 5

.i j i j
i j i j

i j i j

a b x x a b x ab− + +

< <

 
= = 

 
∑ ∑ ------------------(9) 

In fact, ψ  is an isomorphism from F2[x]/f(x) to  

 F2[x]/ ( )f x .The equality                 

              5( . ) . . .a b a b a b xψ −= =    -----------------------(10) 
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allows us to perform interchangeably the standard polynomial 
multiplication in  
 F2[x] / f(x) or the Montgomery multiplication in F2[x]/  

( )f x .Indeed, any composition of additions and 
multiplications in F2[x]/ f(x) can be performed, 
correspondingly, as a composition of additions and 

Montgomery multiplications in F2[x]/ ( )f x .  
                   
4.Conclusion 
In recent years, implementation of  GF (2m)   Montgomery 
multiplication has been widely addressed by the research 
community[8-11]. Montgomery multiplication is often the best 
choice as it enables efficient systolic and pipelined designs. 
Reciprocal representation can be adopted for all such solutions 
without any modification, as it just requires the availability of 
Montgomery multiplication in GF (25). Switching to the new 
representation is as straightforward as a simple reversal of bits 
of the polynomial representation. Switching back to the 
original form is also straightforward since, before reversing 

the bits, we might just need to add ( )f x  to the result for 

zeroing its least significant bit as required for 0a  by (2). 

Removing the Montgomery extra -factor x5 is not necessary, as 
opposed to previous solutions. 
Such an approach may turn out to be advantageous in all 
contexts where hardware support for GF (25), including 
embedded systems and resource-constrained environments, 
such as smart cards. Since any composition of additions and 
multiplications can be performed, correspondingly, as a 
composition of additions and Montgomery multiplications 
without any conversion cost, we indeed suggest using the 
reciprocal form as the representation for holding  GF (25)   
elements in all applications.  
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