
Int. J. of Advanced Networking and Applications 323
Volume: 01. Issue: 05, Pages: 323-326 (2010)

A Montgomery Representation of Elements in
GF(25) for Efficient Arithmetic to Use in Elliptic

Curve Cryptography

A.R.Rishivarman, Assistant Professor, Mathematics ,Dr.Pauls Engineering College,,Villupuram, TN,India.

Email: rishi_130777@yahoo.co.in

B.Parthasarathy , Professor ,Mathematics, Mailam Engineering College,Villupuram,TN,India.

Email: muta_partha@yahoo.co.in

M.Thiagarajan ,Professor ,School of Computing ,SASTRA University ,Tanjore,TN,India .

Email: m_thiyagarajan@yahoo.com

--ABSTRACT --

Elliptic curve calculation was not introduced to cryptography until 1985. Compared with RSA, the advantage of elliptic curve
cryptography lies in its ensuring the same security while the length of key of elliptic curve cryptography is much less than RSA
cryptography and its lessening operation load. In this article a change of representation for elements in GF(25) is proposed to
use in elliptic curve cryptography. The proposed representation is useful for architectures that implement Montgomery
multiplication in the finite field GF(25). In fact, it needs virtually no cost in terms of conversion operations from a standard
multiplication into a Montgomery multiplication.

Key words : Montgomery multiplications, finite field, elliptic curve cryptography (ECC), GF(25), irreducible polynomial.

Date of Submission: January 04, 2010 Date of Acceptance: March 03, 2010

1. Introduction

During the last few years elliptic curve cryptography (ECC)
has become very popular since, among the other benefits, it
uses significantly shorter keys than traditional alternatives like
RSA, and is especially attractive for mobile and wireless
devices which typically have limited computational resources
and bandwidth. For instance, 160-bit ECC keys provide
roughly the same level of security as 1024-bit RSA keys[1].
Several standardisation bodies, including ANSI, NIST, ISO,
and IEEE, have adopted during the last five years standards
for EC cryptography[2].
From a mathematical point of view, ECC is based on elliptic
curves defined over finite fields[3], whose points form a
group[1]. The main operation in ECC is the so-called point-
multiplication, that is k .P where k is an integer and P is a point
on the elliptic curve. Point mu ltiplication and associated
operations used in ECC are always reduced to arithmetic
operations in the underlying finite fields. Efficient
implementation of field arithmetic is therefore critical to the
performance of ECC. This is especially true of field
multiplication.
Standardization bodies recommend using either prime fields
Fp or binary extension fields GF (2m) as the underlying finite
field for ECC[2]. The elements of Fp are the integers 0, . . . , p-
1, and arithmetic on field elements is performed modulo the
prime p. Elements in a finite field GF (2m), alternatively, can

be represented as binary polynomials of degree m-1[3]. When
such representation is used, multiplication is performed as a
conventional polynomial multiplication modulo an irreducible
polynomial p(x), and addition is performed by bitwise
XORing the bits of element representation. For both types of
finite fields, the multiplication of elements implies a reduction
operation, either modulo a prime p or modulo an irreducible
polynomial p(x).
A well-known algorithm for modular multiplication in Fp was
proposed by Montgomery[4]. With the Montgomery
algorithm, the reduction operation is interleaved with the
multiplication steps by addition of multiples of the modulus,
and division operations are replaced with simple shifts, which
are particularly suitable for implementation in hardware and in
software on general purpose computers. Therefore, the
Montgomery multiplication algorithm generally allows for the
design of a hardware unit with shorter signal propagation.
Importantly, Montgomery multiplication enables efficient and
elegant design approaches such as systolic array[5] and
pipeline organizations[6]. In[7], it was shown that the
Montgomery method can be extended to multiplication in
GF(2m),, when polynomial basis is used. Since the steps of the
Montgomery multiplication algorithm for both fields are
almost identical.
The Montgomery method computes a(x). b(x). x-m mod p(x) in
GF (2m), (where m correspond to the bit size of the
operands), and requires a pre- and post processing conversion

Int. J. of Advanced Networking and Applications 324
Volume: 01. Issue: 05, Pages: 323-326 (2010)

of field elements. In this article we propose a change of
representation for elements in GF (25), which transforms a
standard multiplication into a Montgomery multiplication at
virtually no cost in terms of conversion operations. Existing
research and commercial solutions implementing GF (25),
Montgomery multiplication can adopt such representation
without any modification.

2.Mathematical Background
2.1The Finite Field GF(2m)
 The finite field GF(2m) is the characteristic 2 finite
field containing 2m elements. Although there is only one
characteristic 2 finite field GF(2m) for each power 2m of 2 with
m = 1, there are many different ways to represent the elements
of GF(2m).
Here the elements of GF(2m) should be represented by the set
of binary polynomials of degree m – 1 or less:
With addition and multiplication defined in terms of an
irreducible binary polynomial f(x) of degree m, known as the
reduction polynomial, as follows:

• Addition:
If a=am-1 xm-1+……… +a0,

 b=bm-1 xm-1+……… +b0∈ GF(2m),
 then a+b=r in ∈ GF(2m)
,where r= rm-1 xm-1+……… +r0

 with ri ≡ ai + b i (mod 2).
• Multiplication:

If a=am-1 xm-1+……… +a0,
b=bm-1 xm-1+……… +b0∈ GF(2m),

,then a.b = s in GF(2m),
 where s=sm-1 xm-1+……… +s0 is the remainder when
the polynomial ab is divided by f(x) with all
coefficient arithmetic performed modulo 2.

Addition and multiplication in GF(2m) can be calculated
efficiently using standard algorithms for ordinary integer and
polynomial arithmetic . In this representation of GF(2m), the
additive identity is the polynomial 1.
Again it is convenient to define subtraction and division of
field elements. To do so the additive inverse (or negative) and
multiplicative inverse of a field element must be described:

• Additive inverse: if a∈GF(2m), then the additive
inverse (-a) of a in GF(2m) is the unique solution to
the equation a+x = 0 in GF(2m).

• Multiplicative inverse : if a∈GF(2m), a ? 0, then the
multiplicative inverse a-1 of a in GF(2m) is the unique
solution to the equation a.x = 1 in GF(2m).

Additive inverses and multiplicative inverses in GF(2m) can be
calculated effectively using the extended Euclidean algorithm.
Division and subtraction are defined in terms of additive and
multiplicative inverse:
a-b in GF(2m) is a + (-b) in GF(2m) and a/b in GF(2m) is a.(b-1)
in GF(2m).

2.2Elliptic Curves Over GF(2m)
Let GF(2m) be a characteristic 2 finite field, and let a, b ∈
GF(2m) satisfy b ? 0 GF(2m). Then a (non-supersingular)
elliptic curve E(GF(2m)) over GF(2m) defined by the
parameters a, b ∈ GF(2m) consists of the set of solutions or
points P=(x,y) for x,y ∈ GF(2m) to the equation:

y2=x.y=x3 + a.x2 + b in GF(2m)

together with an extra point O called the point at
infinity[11,12]. (Here the only elliptic curves over GF(2m) of
interest are non-supersingular elliptic curves.)
The number of points on E(GF(2m)) is denoted by #
E(GF(2m)). The Hasse Theorem states that:

2m + 1 - 2 2m = # E(GF(2m)) = 2m + 1+ 2 2m .

It is again possible to define an addition rule to add points on
E as the addition rule is specified as follows:

1. Rule to add the point at infinty to itself:
O + O =O

2. Rule to add the point at infinity to any other point:
(x,y) + O = O +(x,y)= (x,y) for all (x,y) ∈ GF(2m)

3. Rule to add two points with the same –coordinates
when the points are either distinct or have

 x-coordinates 0:
(x,y) + (x,x + y)= O for all (x,y)∈ GF(2m)

4. Rule to add two points with different x-coordinates:
Let (x1,y1) ∈ GF(2m) and (x2,y2) ∈ GF(2m) be two
points such that x1? x2. Then (x1,y1)+ (x2,y2)= (x3,y3) ,
where:

 x3=? 2+ ?+x1+x2 +a in GF(2m),
 y3 = ?.(x1+x3) +x3 + y1 in GF(2m),

and ? ≡ 1 2

1 2

y y
x x

+
+

in GF(2m).

5. Rule to add a point to itself (double a point): Let

(x1,y1) ∈ GF(2m) be a point with x1 ? 0. Then (x1,y1)
+ (x1 ,y1) =(x3 ,y3) ,where:

 x3 =? 2+ ?+a in GF(2m) , y3 = x2

1+ (? +1).x3 in GF(2m) ,

 and ? =x1 + 1

1

y
x

in GF(2m).

The set of points on E(GF(2m)) forms an abelian group under
this addition rule. Notice that the addition rule can always be
computed efficiently using simple field arithmetic.
Cryptographic schemes based on ECC rely on scalar
multiplication of elliptic curve points. As before given an
integer k and a point P ∈ GF(2m) , scalar multiplication is the
process of adding P to itself k times. The result of this scalar
multiplication is denoted kP.

Int. J. of Advanced Networking and Applications 325
Volume: 01. Issue: 05, Pages: 323-326 (2010)

3.Proposed representation

Let f(x)=x5+x2 +1-----(1) be an irreducible polynomial over
F2 of degree 5 and let
F2[x]/ f(x) be the corresponding quotient ring. F2[x]/ f(x) is
isomorphic to the field GF (25) and is used for polynomial
representation. We consider the reciprocal polynomial of f(x) ,

denoted ()f x :

We have that ()f x is irreducible and F2[x]/ ()f x is a finite
field.
We define the map as:

4 5 4
52 2

0 1 0

[] []
: ,

() ()
i i i

ii i
i i i

F x F x
a a x a a x a x x

f x f x
ψ −

= = =

→ = → = =

∑ ∑ ∑
 ------------(2)

Definition (2) refers to field elements a∈F2[x]/ f(x)
represented as polynomials of degree less than 5. ψ (a)= a is

the element in F2[x]/ ()f x whose polynomial representation is

obtained by reversing the bits of the polynomial representation
of ‘a’ in F2[x] /f(x) and shifting them left by one position. We
call this representation reciprocal representation. Note that

polynomial a in (2) is of degree ≤ 5and 0 0a = .

ψ is bijective and has the following properties:

P1. ψ preserves the addition, and maps the addition in
F2[x]/f(x)to the addition in

 F2[x]/ ()f x :

 a b a b+ = + ------------(3)

P2. For any a∈ F2[x]/ f(x) we have: ψ 1(.) . .a x a x a x−= =

In fact, (2) refers to field elements ‘a’ represented as
polynomials of degree less then 5. In order to have a.x written
in that from in F2[x]/ f(x) we add a suitable multiple of f(x) to
it:

a.x = a.x+a4. f(x) =
5

1 4
0

() i
i i

i

a a p x−
=

+∑

 =
4

1 4
0

() i
i i

i

a a p x−
=

+∑ --------------(4)

where p5=1 and a–1=0
Recalling that (e+e) = 0 for any e ∈ F2={0,1}, and P5=1, a-1=0,

we can rewrite (.) .a x a xψ = in F2[x]/ ()f x as:

.a x =
4 4

1 4 1 4
0 0

) [()]i i
i i i i

i i

a a p x a a p x−
− −

= =

+ = +∑ ∑ x5

 =
4 4

5 5
1 4

0 0

i i
i i

i i

a x a p x− + − +
−

= =

+∑ ∑

 =
4

5
1 4 5 4 5

0

()i
i

i

a x a p a p− +
−

=

+ −∑

4 3

5 4
4

0 0

i j
i j

i j

a p x a x− −

= =

+ =∑ ∑

5

5
4 5 4

0

i
i

i

a p a p x −

=

+ + ∑

 =
4 4

(4) 5 1 1
4

0 0

() . .j j
j j

j j

a x a f x a x x x a x− − − −

= =

+ = =

∑ ∑

 ---------------------(5)

P3.It follows form P1 and P2 that the expression in the right-

hand side of (2) can be generalized to a=
1

0

N i
ii

a x
−

=∑ with an

arbitrary N>5. Indeed, from the definition we have
5. [.]s se x e x x−= for any binary coefficient e ∈ F2={0,1} and

s<5,and also, based on P2:
1 1 1 2 1.s s s se x e x x e x x e x x x− − − − −= = =

2 2 4 (4).s se x x e x x− − − −= =
4 5 (4) 5. . . [.]s se x x x e x x− − − −= ---------------------(6)

for any e∈ F2 and s ≥ 5.ψ (a)= a can thus be written as:
1 1 1

5

0 0 0

N N N
i i i

i i i
i i i

a x a x a x x
− − −

−

= = =

= =

∑ ∑ ∑ for any N ≥ 5 ---------(7)

P4.ψ preserves the multiplication, and maps the
multiplication in F2[x]/ f(x) to the Montgomery multiplication

in F2[x]/ ()f x . Indeed, in F2[x]/ ()f x we have
4 45 5

0 0
,i j

i ji j
a a x x b b x x− −

= =
 = = ∑ ∑ and the

Montgomery product 5. .a b x− is given by
4 4

5 5 5 () 5

0 0 , 5

[]. [] . [].i j i j
i j i j

i i i j

a x x b x x x a b x x− − − − +

= = <

= =∑ ∑ ∑

 -------------------(8)
Property P3 ensures that the right-hand term in the above
expression can be written as

() 5

, 5 , 5

.i j i j
i j i j

i j i j

a b x x a b x ab− + +

< <

= =

∑ ∑ ------------------(9)

In fact, ψ is an isomorphism from F2[x]/f(x) to

 F2[x]/ ()f x .The equality

 5(.) . . .a b a b a b xψ −= = -----------------------(10)

Int. J. of Advanced Networking and Applications 326
Volume: 01. Issue: 05, Pages: 323-326 (2010)

allows us to perform interchangeably the standard polynomial
multiplication in
 F2[x] / f(x) or the Montgomery multiplication in F2[x]/

()f x .Indeed, any composition of additions and
multiplications in F2[x]/ f(x) can be performed,
correspondingly, as a composition of additions and

Montgomery multiplications in F2[x]/ ()f x .

4.Conclusion
In recent years, implementation of GF (2m) Montgomery
multiplication has been widely addressed by the research
community[8-11]. Montgomery multiplication is often the best
choice as it enables efficient systolic and pipelined designs.
Reciprocal representation can be adopted for all such solutions
without any modification, as it just requires the availability of
Montgomery multiplication in GF (25). Switching to the new
representation is as straightforward as a simple reversal of bits
of the polynomial representation. Switching back to the
original form is also straightforward since, before reversing

the bits, we might just need to add ()f x to the result for

zeroing its least significant bit as required for 0a by (2).

Removing the Montgomery extra -factor x5 is not necessary, as
opposed to previous solutions.
Such an approach may turn out to be advantageous in all
contexts where hardware support for GF (25), including
embedded systems and resource-constrained environments,
such as smart cards. Since any composition of additions and
multiplications can be performed, correspondingly, as a
composition of additions and Montgomery multiplications
without any conversion cost, we indeed suggest using the
reciprocal form as the representation for holding GF (25)
elements in all applications.

References:

[1]. Blake, I.F., Seroussi, G., and Smart, N.P.: ‘Elliptic
curves in cryptography’ (Cambridge University
Press, 1999)

[2]. National Institute of Standards and Technology
(NIST): ‘Digital signature standard (DSS)’ (Federal
Information Processing Standards Publication 186-2,
February 2000)

[3]. Lidl, R., Niederreiter, H., and Rota, G.C.: ‘Finite
fields (encyclopedia of mathematics and its
applications)’ (Cambridge University Press,
1996,2nd edn.)

[4]. Montgomery, P.L.: ‘Modular multiplication without
trial division’, Math. Comput., 1985, 44, (170), pp.
519–521

[5]. Walter, C.D.: ‘An improved linear systolic array for
fast modular exponentiation’, IEE Proc. Comput.
Digit. Tech., 2000, 145, (5), pp. 323–328

[6]. Savas¸, E., Tenca, A.F., and Koc¸, C¸ .K.: ‘A scalable
and unified multiplier architecture for finite fields

GF(p) and GF(2m)’ in Cryptographic Hardware and
Embedded Systems, Lect. Notes Compu. Sci.
(Springer-Verlag), 2000, 1965, pp. 277–292

[7]. Koc¸, C¸ .K., and Acar, T.: ‘Montgomery
multiplication in GF(2k)’, Des. Codes Cryptogr.,
1998, 14, (1), pp. 57–69

[8]. Tenca, A.F., Savas, E., and Koc¸, C¸ .K.: ‘A design
framework for scalable and unified multipliers in
GF(p) and GF(2m)’, Int. J. Comput. Res., 2004, 13,
(1), pp. 68–83

[9]. Satoh, A., and Takano, K.: ‘A scalable dual-field
elliptic curve cryptographic processor’, IEEE Trans.
Comput., 2003, 52, (4),pp. 449–460

[10]. Großscha¨adl, J., and Kamendje, G.A.: ‘Low-power
design of a functional unit for arithmetic in finite
fields GF(p) and GF(2m)’ in Information Security
Applications, Lect. Notes Comput. Sci. (Springer
Verlag), 2003, 2908, pp. 227–243

[11]. O’Rourke, C., and Sunar, B.: ‘Achieving NTRU
with Montgomery multiplication’, IEEE Trans.
Comput., 2003, 52, (4), pp. 440–448

[12]. Motorola, ‘MPC180LMB Security Processor Users
Manual’ (available at www.freescale.com)

[13]. A.Cilardo, A.Masseo and
N.Mazzoeca“Representation of Elements in
F2

mEnabeling unified field arithmetic for elliptic
curve cryptography”, Electronics letters July 2005
Vol:41, No.14 IEEE Xplore .

